ZHI-WEI LI

ENTITY-LOCATION SYSTEM AND ITS EXTENSIONS

COGNITIVE SYSTEM FOR AEC DESIGN

Real life application: design aids

Generalization: new designs, new rules

Relations: knowledge base of rules

Building block: vocabulary

AGENDA

- Basic system
 - Front end: Interface
 - Back end: Learning
- Evaluation

Relations: knowledge base of rules

Building block: vocabulary

AGENDA

- Basic system
 - Front end: Interface
 - Back end: Learning
- Evaluation
- Extension: Generalizing the rules (Concerns addressed!)

Application: design aids

Generalization: new designs, new rules

Relations: knowledge base of rules

Building block: vocabulary

INTERFACE: STEP-BY-STEP

Example rule:

"internal employee space should be placed next to the window"

Office Office office office User selection 29 to 294 17071 " are windows

Step 1: Mark the entity on the graph

click to select the entity you are thinking of

Step 2: Name the entity Office Office office 29 to 294 17071 " are windows

Name this entity by selecting the tags or write your own definition.

Step 3: Choose the location descriptor Office Office Office office office 29 to 294 150 fr " are windows

System suggestions

add another rule

BACKEND: LEARNING THE KNOWLEDGE

- Location descriptors
- Entities

- Location descriptors (mostly pre-designed)
 - 1. A comprehensive list of descriptors

FIRST ORDER

In the north/south of the room
In the middle of the room
At the corner of the room

SECOND ORDER

Near _____ (Not far from _____ Close to ____)

Away from

THIRD ORDER

Between ____ and ____

- Location descriptors (mostly pre-designed)
 - ▶ 1. A comprehensive list of descriptors capable of disambiguation

FIRST ORDER

In the north/south of the room
In the middle of the room
At the corner of the room

SECOND ORDER

Near _____ (Not far from ____)

Away from

THIRD ORDER

Between ____ and ____

- Location descriptors (mostly pre-designed)
 - ▶ 1. A comprehensive list of descriptors capable of disambiguation
 - *2. Mapping to the graphic floor plan

AWAY FROM OFFICE

- Entities:
 - Explicit entities: windows, stairs, offices, etc. (mostly pre-defined and read from the design)
 - Implicit entities

- Example: buffer space, chat area, high people density area, quiet areas
- Problem: overly big vocabulary thus hard to use rules
- Solution: spatial overlapping index (SOI)

Calculating spatial overlapping index (SOI)

SOI = Intersection/union

In this graph:

SOI(office, internal space) = 1

Calculating spatial overlapping index (SOI)

SOI = Intersection/union

In this graph:

SOI(buffer area, coffee area) = 1/3

Calculating spatial overlapping index (SOI)

In the knowledge base:

SOI(A,B) = sum of all graphs containing A and B at the same time

= correlation factor between the two entities

High SOI indicates terms can be combined and reduced

2. RULE LEARNING

- List of combinations between locations and entities
- Searchable by entities or by locations

should be placed close to the stair?

- Front desk
- Guest space
- Meeting room
- "Specialized rule books" for different categories of designs (offices, shops, homes, etc.)

EVALUATION

ITERATIONS OF DEVELOPMENT

Build up basic vocabulary

User test & adding new terms

Incorporating user vocabulary

TWO INDEXES FOR EVALUATION

- ▶ 1. Ease of use
 - Less self-defined terms that new users input.
 - Less time needed for encoding per rule.
- ▶ 2. Usefulness of the knowledge base
 - Self-report, moderated interview sessions
 - Rule completion test

TWO INDEXES FOR EVALUATION

- ▶ 1. Ease of use
 - Less self-defined terms that new users input.
 - Less time needed for encoding per rule.
- ▶ 2. Usefulness of the knowledge base
 - Self-report, moderated interview sessions
 - Rule completion test

should be placed close to the stair?

- Front desk
- Guest space
- Meeting room

User's answer

EXTENSION: GENERALIZING THE RULES

WHAT ABOUT RULES NOT IN THE FORM OF "ENTITY-LOCATION"?

- The existing vocabulary builds basis for further extension
- Example extension: causal design rules

WHAT ABOUT RULES NOT IN THE FORM OF "ENTITY-LOCATION"?

- The existing vocabulary builds basis for further extension
- Example extension: causal design rules
 - ▶ 1 "work routine" motivated design

e.g. <u>Phone rooms, printer rooms and conference rooms should be close to each other</u> so people can easily make phone calls or print documents during the conference.

"When ____ (people) do ___ (routine), they will need to do __(activities) at ___ (entity), __(activities) at ___ (entity)..., so I put them together"

CAUSAL RULES

WHAT ABOUT RULES NOT IN THE FORM OF "ENTITY-LOCATION"?

- The existing vocabulary builds basis for further extension
- Example extension: causal design rules
 - ▶ 1 "work routine" motivated design
 - 2 "value" motivated design

Office should be placed near the windows so it has more sunlights

"___ should be placed at ___ so it has more / less ____"

CAUSAL RULES

CONCEPT = NAME + FEATURES

Infinite extension to new rules!

OTHER PROJECT EXTENSIONS

- Automatic intent detection
- Active learning for more efficient coding
- Unsupervised learning
- Learning from natural language data

AUTOMATIC INTENT DETECTION

- Step1: recognizing explicit entities and their spatial relations
- Step2: recognizing potential implicit entities
- Step3: match to the rule dictionary

 evaluation: for a new floor plan, compare the system detected intents and human report.

ACTIVE LEARNING

- Only ask the user to report when rules contradict.
 - E.g. Both offices and conference rooms should be close to the windows, how did you decide?
- Learn the priorities of rules / Extend to causal rules

Higher efficiency for knowledge authoring!

UNSUPERVISED LEARNING

After the system is relatively complete:

- Give a "matching score" of how each design matches the current knowledges.
- The knowledge base should learn to optimize the matching score.

No participant needed => Scale up the learning immensely!

LEARNING FROM NATURAL LANGUAGE DATA

- Extract entities and location descriptors from free-formed speech of designers explaining the intent
- Extraction guided by the existing knowledge base

Utilizing much greater variety of data!

- Front end: Interface
- Back end: Learning
 - Location descriptors
 - Explicit and implicit entities; SOI
- Evaluation:
 - user experience
 - Knowledge base functionality
- Extension: Generalizing the rules
 - "Work routine" & "value" motivated design
 - Automatic intent detection
 - Active learning
 - Unsupervised learning
 - Learning from natural language data

THANK YOU!